Andrew Top, Software Engineer

aabtop@gmail.com | (415) 347-6309 | San Francisco, California, US GitHub | LinkedIn

SUMMARY	Ever since I was a child I've been absorbed designing and evolving large software syst wide variety of problem domains, but I am 2d/3d graphics, embedded systems, and d exploring a hard problem and the satisfact	I in computer science. I enjoy ems. I have experience in a particularly passionate about eveloper tools. I enjoy ion that comes with solving it.	
EXPERIENCE	YouTube - Staff Software Engineer https://youtube.com	2012-11-05 — 2020-01-17	
	 Tech lead for Cobalt (cobalt.dev), the browser/application platform behind the YouTube on TV app. 		
	 Joined the team as the graphics lead, implementing a subset of the GLES graphics API for PlayStation 3, PlayStation 4 and WiiU in terms of their respective proprietary graphics APIs. 		
	 Designed the Cobalt graphics rendering stack, enabling improved animation framerate versus Chrome on embedded devices (e.g. game consoles, embedded TV device chipsets, Raspberry Pis). 		
	 Designed high-level layout of major browser components, including layout, JavaScript engine, the Web API (including DOM), networking engine and graphics. 		
	 Designed and implemented a cross-platform low-latency web-based solution to viewing YouTube 3D 360 spherical videos on TVs and VR headsets. 		
	 Mentored and lead many team member 	rs over the course of 7 years.	
	 Designed systems for monitoring and an Collaborated with TV and device makers Cobalt across the industry. 	nalyzing performance issues. s to promote adoption of	
	TurtleSeg - Software Engineer https://www.turtleseg.org	2009-06-01 — 2012-09-01	
	 TurtleSeg started as my M.Sc. project at Simon Fraser University, and was later acquired by Oxipita Inc. TurtleSeg is a tool for performing interactive 3D image segmentation, with emphasis on a built in active learning feature. 		
	 Architected, implemented, and package 	ed the software tool.	
	 Implemented algorithms which convert user input into 3D surface meshes. 	volumetric 3D image data and	
	 Integrated with the medical image analy VTK. 	ysis software libraries ITK and	
	Designed and implemented TurtleSeg'sWrote a manual for using the software,	website, turtleseg.org. including video tutorials.	
	Next Level Games Inc Software Deve	eloper	
	https://nextlevelgames.com	2007-05-01 — 2009-05-01	
	 Worked on multiple games including Pu Strikers (GameCube), Ticket To Ride (XI Friend or Foe (PS2, Xbox 360, Wii). 	nch Out!! (Wii), Super Mario oox 360) and Spider-Man:	
	 Dramatically improved the framerate in Wii's locked cache resources. 	Punch-Out!! by utilizing the	
	 Augmented silhouette algorithm to great cartoon character rendering in Punch-O 	atly improve appearance of ut!!.	
	 Designed and implemented a networkin networking API in order to provide non-l 	ng library on top of the Wii's blocking asynchronous calls.	
	 Architected the gameplay structures an Xbox Live Arcade game, Ticket to Ride. was client-server based, with support fo drops. 	d networking system in the The game's networking model or server migration if the host	

NVIDIA - Software Engineer Intern https://nvidia.com/

 Engineer Intern
 2006-05-01 — 2006-08-01

- Worked on features for NVIDIA's GoForce mobile chip firmware.
- Implemented power-saving functionality by disabling chip features while they are not being used.
- Optimized time-to-splash screen by recording and playing back standard bootup flow.

	 Personal Projects https://andrewtop.com Respire (2020): A modular build system with a Python from Linfinity (2008): An infinitely recursive 3D scene graph systemabling the construction of 3D fractals that are rendered time. Virtual Foosball (2006): A networked 3D foosball computer Marching Tetrahedrons (2004): Implements the marching tetrahedrons algorithm to convert 3D density fields into iso Software 3D Renderer (2003): A software 3D rendering pip written from scratch that is capable of rasterizing Quake 2 	t-end. tem in real- game. osurfaces. peline models.	
PUBLICATIONS	(Patent) Spherical video in a web browser, United States Patent and Trademark Office 2019-05-21 https://patents.google.com/patent/US10296592B2		
	(Patent) Method and apparatus for detecting anatomic elements, United States Patent and Trademark Office https://patents.google.com/patent/US9940545B2	al 2018-04-10	
	(Patent) Methods and systems for interactive 3D image segmentation, United States Patent and Trademark Of https://patents.google.com/patent/US9317927B2	e fice 2016-04-19	
	M.Sc. Thesis: Automated confidence-based user guidan increasing efficiency in interactive 3D image segmenta Simon Fraser University http://summit.sfu.ca/item/12668	nce for ntion, 2012-01-25	
	Active Learning for Interactive 3D Image Segmentation Image Computing and Computer-Assisted Intervention volume 6893, pages 603-610 https://link.springer.com/chapter/10.1007/978-3-642-23626-6	n, Medical (MICCAI), 2011-01-01 _74	
	Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segments Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5	e for ation, rvention pages 204- 2010-01-01 _20	
	Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segments Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progr and-theory/dynamic-3d-scene-graphs-r2590/	e for ation, rvention bages 204- 2010-01-01 _20 2008-12-10 amming-	
AWARDS	Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segments Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progr and-theory/dynamic-3d-scene-graphs-r2590/ Innovation in Technology Award, Western Association Graduate Schools (WAGS)	e for ation, rvention bages 204- 2010-01-01 _20 2008-12-10 amming- of 2013-03-13	
AWARDS	 Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segmenta Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progr and-theory/dynamic-3d-scene-graphs-r2590/ Innovation in Technology Award, Western Association Graduate Schools (WAGS) This award is given for the development of innovative tech thesis or dissertation and its utilization for the creative solu- major problem. 	e for ation, rvention bages 204- 2010-01-01 _20 2008-12-10 amming- of 2013-03-13 mology in a ution of a	
AWARDS	 Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segmenta Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progrand-theory/dynamic-3d-scene-graphs-r2590/ Innovation in Technology Award, Western Association Graduate Schools (WAGS) This award is given for the development of innovative tech thesis or dissertation and its utilization for the creative solumajor problem. Simon Fraser University (BC, Canada) 2009-06-01 — Master - Computer Science (Medical Image Analysis), Supervis Ghassan Hamarneh and Rafeef Abugharbieh, GPA: 4.3/4.3 	e for ation, rvention bages 204- 2010-01-01 _20 2008-12-10 amming- of 2013-03-13 mology in a ution of a 2012-09-01 sors:	
AWARDS	 Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segmenta Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progrand-theory/dynamic-3d-scene-graphs-r2590/ Innovation in Technology Award, Western Association Graduate Schools (WAGS) This award is given for the development of innovative tech thesis or dissertation and its utilization for the creative solumajor problem. Simon Fraser University (BC, Canada) 2009-06-01 — Master - Computer Science (Medical Image Analysis), Supervis Ghassan Hamarneh and Rafeef Abugharbieh, GPA: 4.3/4.3 University of Waterloo (Ontario, Canada) 2002-09-01 — Bachelor - Math, GPA: 88% (CS/Math courses) 	e for ation, rvention bages 204- 2010-01-01 _20 2008-12-10 amming- of 2013-03-13 mology in a ution of a 2012-09-01 sors: 2007-04-01	
AWARDS EDUCATION SKILLS	 Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segments Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p. 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progrand-theory/dynamic-3d-scene-graphs-r2590/ Innovation in Technology Award, Western Association Graduate Schools (WAGS) This award is given for the development of innovative tech thesis or dissertation and its utilization for the creative sole major problem. Simon Fraser University (BC, Canada) 2009-06-01 — Master - Computer Science (Medical Image Analysis), Supervisi Ghassan Hamarneh and Rafeef Abugharbieh, GPA: 4.3/4.3 University of Waterloo (Ontario, Canada) 2002-09-01 — Bachelor - Math, GPA: 88% (CS/Math courses) Languages: C++, C, JavaScript, Python, Julia, MATLAB Technologies: 2d/3d graphics, Web Browsers, Continuous Integration/Deployment, Build Systems, Cross-Platform Abstrater Performance Profiling, Embedded Devices Tools: Git, Docker, CMake, Gyp, Ninja, BuildBot Libraries: OpenGL, Vulkan, V8 JavaScript engine, Googletest, Computer Science (Medical Libraries) 	e for ation, rvention pages 204- 2010-01-01 _20 2008-12-10 amming- of 2013-03-13 mology in a ution of a 2012-09-01 sors: 2007-04-01 actions,	
AWARDS	 Spotlight: Automated Confidence-based User Guidance Increasing Efficiency in Interactive 3D Image Segments Medical Image Computing and Computer-Assisted Inter Workshop on Medical Computer Vision (MICCAI MCV), p 213 https://link.springer.com/chapter/10.1007/978-3-642-18421-5 Dynamic 3D Scene Graphs, gamedev.net https://www.gamedev.net/tutorials/_/technical/graphics-progrand-theory/dynamic-3d-scene-graphs-r2590/ Innovation in Technology Award, Western Association Graduate Schools (WAGS) This award is given for the development of innovative tech thesis or dissertation and its utilization for the creative sole major problem. Simon Fraser University (BC, Canada) 2009-06-01 — Master - Computer Science (Medical Image Analysis), Supervit Ghassan Hamarneh and Rafeef Abugharbieh, GPA: 4.3/4.3 University of Waterloo (Ontario, Canada) 2002-09-01 — Bachelor - Math, GPA: 88% (CS/Math courses) Languages: C++, C, JavaScript, Python, Julia, MATLAB Technologies: 2d/3d graphics, Web Browsers, Continuous Integration/Deployment, Build Systems, Cross-Platform Abstra Performance Profiling, Embedded Devices Tools: Git, Docker, CMake, Gyp, Ninja, BuildBot Libraries: OpenGL, Vulkan, V8 JavaScript engine, Googletest, 	e for ation, rvention pages 204- 2010-01-01 _20 2008-12-10 amming- of 2013-03-13 mology in a ution of a 2012-09-01 sors: 2007-04-01 actions,	